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With the rapidly growing attention to multi-view data in recent years, multi-view outlier detection has become a rising ield

with intense research. These researches have made some success, but still exist some issues that need to be solved. First, many

multi-view outlier detection methods can only handle datasets that conform to the cluster structure but are powerless for

complex data distributions such as manifold structures. This overly restrictive data assumption limits the applicability of these

methods. In addition, almost the majority of multi-view outlier detection algorithms cannot solve the online detection problem

of multi-view outliers. To address these issues, we propose a new detection method based on the local similarity relation and

data reconstruction, i.e., the Self-Representation Method with Local Similarity Preserving for fast multi-view outlier detection

(SRLSP). By using the local similarity structure, the proposed method fully utilizes the characteristics of outliers and detects

outliers with an applicable objective function. Besides, a well-designed optimization algorithm is proposed, which completes

each iteration with linear time complexity and can calculate each instance parallelly. Also, the optimization algorithm can be

easily extended to the online version, which is more suitable for practical production environments. Extensive experiments

on both synthetic and real-world datasets demonstrate the superiority of the proposed method on both performance and time

complexity.

CCS Concepts: · Computing methodologies→ Anomaly detection; Cluster analysis; Online learning settings.

Additional Key Words and Phrases: outlier detection, multi-view data, subspace learning, adaptive similarity learning

1 INTRODUCTION

Unsupervised outlier detection aims to detect the abnormal data in a given dataset, while these abnormal

data, or named outliers, are markedly inconsistent with the normal instances [2, 31]. In general, the traditional

unsupervised outlier detection methods assume that normal instances are similar to each other, and most of the

instances are normal. This means that the description of data is "compact" i.e., normal instances are generated by

the same mechanism, while the outliers are not [22, 40]. Based on this principle, a massive number of outlier

detection methods are designed in recent decades, e.g., clustering-based models, distance-based models, density-

based models, probabilistic models, etc [1]. Besides these shallow models, many deep outlier detection methods

have also been proposed [37, 39]. These diferent types of outlier detection methods are widely applied to a
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View 1 View 2

Class outlier Attribute outlier Class-Attribute outlier

Fig. 1. An illustration of three types of multi-view outlier: (1) Class outlier (the red diamond) is closed to the

green circles in the first view, but is closed to the blue triangles in the second view; (2) Atribute outlier (the black

star) is remote from the other points in both views; (3) Class-Atribute outlier (the orange square) is close to the

other points in the first view but is remote from the other points in the second view.

wide range of data mining scenarios, such as data cleaning, credit card fraud, network intrusion detection,

web service QoS prediction, DRAM failure prediction, and even in popular federal learning in recent years

[1, 3, 27, 41, 44, 49, 54].

The traditional outlier detection mainly focuses on single-source data, i.e., single-view data. However, with the

constantly improving ability of data collection, mixed-type data and multi-view data are taken more seriously

[12, 55]. Mixed-type data are composed of a mixture of both numerical (continuous) features and categorical

(discrete) features. In recent years, many works [9, 21, 26, 52] on mixed-type outlier detection have been proposed.

Among them, MIX [52] fully considers the behavior of data points in diferent feature spaces, and collaboratively

iteratively optimizes its outlier scoring stage to get amore accurate estimate. Multi-view data is usually represented

by a heterogeneous but related group of features, which are collected from diverse sources or obtained from

various domains, and one of them is often called one view of the dataset [14]. Any particular single-view data

cannot comprehensively represent the instance itself, so it’s essential to fully utilize the abundant information in

multi-view data [30, 50, 58]. Nevertheless, multi-view outlier detection is widely divergent from the single-view

one, which is largely due to the two characteristics of multi-view data Ð consensus and complementarity [45].

Consensus means that features from diferent views share a part of the same information and show consistent

behavior [35]. If an instance fails to meet this constraint, which is likely to happen in a multi-view scenario, e.g.,

the same person belongs to diferent social communities in diferent social networks, this instance is probably

an outlier [20]. Interestingly, points that exhibit inconsistent behavior may also be normal points. If there is

little redundancy/consistency between diferent views of the multi-view data (e.g. color view and weight view),

then these points exhibiting inconsistent behavior may indeed not be outliers. However, the current multi-view

research does not pay attention to such multi-view data, because there is no redundant information/consistent

information between views, which will lead to the failure of multi-view learning [51]. Correspondingly, the current

multi-view outlier detection methods only focus on the multi-view data with consistent information between

the views, so those data points showing inconsistent behaviors can generally be regarded as outliers. These

complex behaviors require the redeinition of multi-view outliers, and speciically, based on the characteristics of

multi-view data and existing literature [16, 28], three kinds of multi-view outliers are involved in this paper, as

shown in Figure 1:

• Class outliers exhibit inconsistent behavior, and their local neighborhood relationships are often com-

pletely various across diferent views, which means they have diferent neighborhoods in diferent views.

ACM Trans. Knowl. Discov. Data.



A Self-Representation Method with Local Similarity Preserving for Fast Multi-View Outlier Detection • 1:3

• Attribute outliers are the traditional single-view outliers, and they are often very dissimilar from the

normal instances.

• Class-Attribute outliers are the mixture of the above two types of outliers. They exhibit the class outliers

behaviors in some views and exhibit the Attribute outliers behaviors in the others.

Several multi-view outlier detection methods are proposed to detect one or more types of multi-view outliers

in these years [16, 20, 24, 28, 29, 34, 43, 56, 57]. They have indeed made some success to some extent, but still

leave some issues that need to be handled:

I1 The arbitrary number of views: The early methods only consider the two-views scenario and use the

pair-wise constraint to model multi-view consensus. It’s not easy to extend these methods to three or more

views scenario.

I2 The dataset without clustering structure: Some methods are derived from clustering theory, so they

generally show poor performance on the datasets without clustering structure.

I3 Diferent types of outliers: Some methods can not handle all three types of outliers. Even if they could,

they can hardly achieve the ideal performance for diferent outliers proportion.

I4 The large-scale dataset: Some methods are sufered from high time complexity. They spend O (N2) or

even O (N3) time complexity in each iteration, so they are not suitable for large-scale datasets.

I5 The online scenario: Hardly anymodel consider the online scenario, which is practical in many real-world

problems.

We summarize the relationship between the existing methods and the proposed method for solving these

issues, as shown in Table 1. In these methods, CRMOD, LDSR, MODDIS, and NCMOD handle two or more

views (issue I1) by learning a cross-views consistent representation (multi-view consensus learning strategy).

MODDIS, MUVAD, and NCMOD handle datasets without clustering structure (issue I2) by considering the

neighborhood in the locality. Inspired by these methods, the multi-view consensus learning strategy allows the

model to conveniently handle the real multi-view scenario. And taking multi-view consistent neighborhood

relationships into account is more meaningful and direct than comparing the cross-view clustering membership,

whereas clustering membership is regarded as a product of neighborhood relationships under the graph-based

clustering methods [36, 48]. This motivates us to improve the multi-view consistent neighborhood relationship

method so that it can perform fast but accurate outlier detection on all types of outliers.

In this paper, we propose a new fast multi-view outlier detection method based on the local similarity relation

and data reconstruction, i.e., the Self-Representation Method with Local Similarity Preserving for fast multi-view

outlier detection (SRLSP). SRLSP maintains the advantage of the multi-view consistent neighborhood relationship

method, while has the superior ability to detect the diferent types of multi-view outliers and can be performed

on online scenarios. Consequently, the main contributions of this paper are summarized as follows:

• The proposed method learns a common cross-view similarity matrix from multi-view data, which can easily

extend to two or more views scenario (issue I1). The similarity learning and self-representation learning

processes jointly capture the characteristics of diferent types of data (issue I3), making the proposed

method achieve superior and stable performance on diferent outliers proportion by calculating outlier

scores.

• The similarity learning process does not depend on the data having a distinct clustering structure (issue I2),

and the cross-view neighbor similarity is taken into consideration to compare the consistency. Considering

only a few neighbors greatly reduces the time complexity compared to considering the whole dataset.

By setting the number of neighbors used in the similarity learning process as a parameter, the proposed

method can complete each iteration with O (NloдN ) time complexity and can even calculate each instance

parallelly (issue I4).
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Table 1. Comparison of the existing methods and the proposed method. Circle ⃝ means method can handle this issue and X

mark × otherwise.

Method I1 I2 I3 I4 I5

HOAD [20] × × × O (N 2) ×

AP [34]) × × × O (N 2loдN ) ×

DMOD [56] × × ⃝ O (N ) ×

CRMOD [57] ⃝ × ⃝ O (N ) ×

MLRA [29] × × ⃝ O (N 3) ×

LDSR [28] ⃝ × ⃝ O (N 3) ×

MODDIS1[24] ⃝ ⃝ ⃝ - ×

MUVAD [43] × ⃝ ⃝ O (N 2) ×

NCMOD1[16] ⃝ ⃝ ⃝ - ×

Proposed method (SRLSP) ⃝ ⃝ ⃝ O (NloдN ) ⃝

1 MODDIS and NCMOD are neural network method, and it’s not easy to

directly compare the time complaxity with the traditional methods.

• To the best of our knowledge, we are the irst multi-view outlier detection method to handle online scenario.

By introducing the initial normal set, the proposed method can be easily extended to an online version

(issue I5), whereas most of the previous methods are not suitable to make this extension.

2 RELATED WORK

Outlier detection is an important topic in data analysis, which can help to accurately evaluate and make full

use of the originally collected data [1, 5]. Up to now, several single-view outlier detection methods have been

proposed [4, 11, 19, 32, 40, 46, 53], concentrating mainly on unsupervised and semi-supervised learning. However,

there are only a few multi-view outlier detection methods in the literature. In the early stages of multi-view

outlier detection research, the deinition of multi-view outliers is ambiguous. [20] irst studies the "inconsistent

behaviors" in multi-view data and uses the result of multi-view spectral clustering to predict whether an instance

performs inconsistency, which this method is named HOAD. HOAD conducts spectral clustering on the input

similarity graphs of two views simultaneously with a consistency constraint. Although the framework of this

method is simple and the performance remains poor, it comes up as a pioneering work and is worth studying.

Another earlier work also addresses the problem of "inconsistent behaviors" and provides a preliminary consensus

on the deinition of class outliers [23]. [34] follows up with a multi-view outlier detection method AP, which is

based on ainity propagation clustering and raises concern about the topic of multi-view outlier detection. AP

has achieved a very good performance on detecting "inconsistent behavior" and is often regarded as the baseline.

However, both HOAD and AP can only detect "inconsistent behaviors", or class outliers in this paper, so they can

not handle other kinds of outliers perfectly.

To better connect with the single-view outlier detection, attribute outliers and class-attribute outliers are

deined one after another. [56] proposes the method DMOD, which performs k-means clustering on each view

and uses the pair-wise constraint to reduce the diference of the clustering indicators. In this work, the widely

used L2,1-norm [17, 47] is introduced to model the error term, which guarantees the sparsity of the error matrix

in the dimension of instances. A well-deined outlier measurement criterion is proposed to help DMOD detecting

both attribute and class outliers. To overcome the limitation of pair-wise constraint, [57] improves the objective of

DMOD, adding a cross-views consistent clustering indicator to constrain the similarity between the view-speciic

clustering indicators and the cross-views consistent clustering indicator, which the model is named CRMOD. The

ACM Trans. Knowl. Discov. Data.



A Self-Representation Method with Local Similarity Preserving for Fast Multi-View Outlier Detection • 1:5

relationship between MLRA [29] and LDSR [28] is similar to the relationship between DMOD and CRMOD, but

the clustering method is changed to the low-rank representation for subspace clustering. However, all the above

methods are directly related to multi-view clustering, which can not separate these methods from the clustering

scenario.

Most recently, the neighborhood in the locality is considered to reveal the deeper characteristics of multi-view

outliers [43], which helps to design the outlier measurement criterion in datasets without clustering structure.

And neural networks are also adopted to explore the latent representation of multi-view data [24] or handle

the high-dimensional data [16]. NCMOD automatically encodes the intrinsic information of each view into

a comprehensive latent space with a consensus neighborhood structure and then enables multi-view outlier

detection by capturing the inconsistency of neighbor structures across views. NCMOD inspires us to focus on

the latent local similarities in real data.

However, these methods often have high time complexity, and none of them can solve the problem of online

detection of multi-view outliers. In this paper, we pay more attention to how to design a fast multi-view outlier

detection method, which can adapt easily to the online scenario.

3 THE PROPOSED METHOD

Given a speciic multi-view dataset X = {X (1)
, . . . ,X

(V) }, where X (v )
= {X

(v )
1 , . . . ,X

(v )
N
} ∈ RN×D

(v )

is the feature

matrix of the v-th view. And N, V and D(v ) refer to the number of instances, views and the feature dimension of

the v-th view respectively. The unsupervised multi-view outlier detection aims to score each instance according

to its probability of being any kinds of multi-view outliers. Except otherwise deined, the i-th row of a matrixA is

deined as Ai , and given a set of indicesN , AN = {Aj |j ∈ N } is the submatrix of A with the rows corresponding

to the indices in N . In Section 3.1, we address the limitations of current multi-view outlier detection methods

on data assumptions, and propose a neighbor-based self-representation learning submodule. In Section 3.2, we

propose an adaptive similarity learning submodule for the problem of detecting inconsistent behavior of data

points across views. In Section 3.3, we will fuse our proposed two submodules to obtain the inal objective

function. In Section 3.4, we propose our outlier score function to enable detection of multiple multi-view outliers.

3.1 The Neighbor-based Self-Representation Submodule

Now let us consider how to detect the attribute outliers. Note that attribute outliers locate far away from their

neighbors in either view. Based on this observation, we consider reconstructing each sample point with its

neighbors. Normal points can be reconstructed by nearby neighbors with a smaller reconstruction coeicient;

while attribute outliers are reconstructed by distant neighbors (normal points), resulting in a larger scale of

reconstruction coeicient. Therefore, the self-representation method can be deployed for the attribute outliers

detection.

However, directly applying traditional self-expression methods to multi-view outlier detection leads to limita-

tions in data assumptions. MLRA and LDSR simply use linear combinations of all data points in the dataset for

self-expression, resulting in these methods only dealing with data distributions that conform to the assumption

of global cluster structure. To accommodate more general data assumptions, we propose to limit the scope of

self-expression to neighbors, proposing a neighbor-based self-expression learning submodule.

Datasets with high-dimensional features are usually strongly correlatedwith certain low-dimensional subspaces,

rather than being uniformly distributed throughout the space [18, 28]. Speciically, in single-view dataset X ∈

R
N×D, each data point can be reconstructed by a linear combination of other points in the same subspace, which

is called the self-representation method:

Xi = SiX + Ei , (1)
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where S ∈ RN×N is the subspace representation matrix and E ∈ RN×D models the reconstruction error. By adding

the sparse or low-rank constraint on S , the hidden subspaces are found in the original data from the local or

global perspective. Because our basic assumption is that the dataset doesn’t necessarily have a global clustering

structure, and the optimization of the nuclear norm [13] is often accompanied by high time complexity, we pay

more attention to the sparse constraint used from the local perspective. Inspired by LSR [33] and LLE [38], we

select a few neighbors for self-representation, to ensure the sparsity of the representation matrix S , and used the

Frobenius norm to guarantee the smooth of the representation weight S and the reconstruction error E. Thus we

can learn the local structure without clustering prior by solving the following problem:

min
S

∥X − SX ∥2F + γ ∥S ∥
2
F

s .t . Si, j = 0,∀j < N (i ),∀i = 1, . . . ,N,
(2)

where N (i ) is the indices of the k nearest neighbors of the i-th instance, and γ is the trade-of parameter. Notice

that Si, j is greater than 0 only when j ∈ N (i ), we use Z ∈ RN×k to represent the elements which can greater

than 0 in S , and take the corresponding row of X in N (i ), i.e., XN (i ) . So the objective function (2) can be further

formulated as:

min
Z

N
∑

i=1

(

∥Xi − ZiXN (i ) ∥
2
2 + γ ∥Zi ∥

2
2

)

. (3)

Attribute outliers always lie far away from the normal instances, so only the normal instances can be reconstructed

with small weights inZi . By using l2-norm onZi , attribute outliers’ representation weights are punished, resulting

in apparent large reconstruction error Ei . This relationship of failing in reconstruction is mutual, which means

the normal instances can not use the attribute outliers to reconstruct, nor can the attribute outliers. The proper

value of k guarantees the capacity of the neighbors set, which ensures that the self-representation process of

normal instances can proceed successfully, but not for attribute outliers.

3.2 Adaptive Similarity Learning Submodule with Graph Fusion

In order to further deal with class outliers, we illustrate the efectiveness of the similarity matrix in detecting

class outliers, and further innovatively propose an adaptive similarity learning submodule.

When it came to the detection of the class outliers, we note that the neighbor relationship varies across varying

views. Since the similarity matrix could relect the neighbor relations among diferent samples, we capture the

inconsistency of neighbor relations by observing the inconsistency of the similarity matrix. Speciically, normal

points have similar neighbor relationships in diferent views, so the consistent similarity matrix learned by fusing

all views should not be very diferent from the similarity matrix of each view. However, due to the inconsistency

of the neighbor relationship between the class outliers in diferent views, the consensus similarity matrix obtained

after the fusion should be quite diferent from the similarity matrix of each view.

Usually, to learn a suitable similarity matrix for a speciic graph-based model (e.g., graph clustering [6, 7, 15]

and graph-based information retrieval [8]) without extensive manual tuning on a speciic similarity measure, the

adaptive similarity learning method is often used to combine with the objective by solving the following problem

[36]:

min
S

N
∑

i, j=1

(

Si, j ∥Xi −X j ∥
2
2 + γS

2
i, j

)

s .t . Si1 = 1,

0 ≤ Si ≤ 1,

∀i = 1, . . . ,N,

(4)
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Fig. 2. Illustration of the proposed method. The adaptive similarity learning process extracts the view-specific similarity

information and the graph-fusion process uniforms this information by leaning a common cross-view similarity consensus.

The self-representation process further verifies the validity of this consensus by data reconstruction. For instance, the class

outlier with ID 10 can not achieve cross-view consensus, and the atribute outlier with ID 9 fails to reconstruct the original

data, so they can separate from the normal instances in the proposed model.

where parameter γ ∈ (0,+∞) controls the smoothness of Si : when γ → 0, Si becomes sharp, i.e., only the instance
X j closest to Xi has Si, j = 1, otherwise Si, j = 0; when γ → +∞, Si becomes smooth, i.e., Si, j =

1
N ,∀j = 1, . . . ,N.

We extend the single-view adaptive similarity learning method Equation (4) to multi-view cases. To be speciic, we
assume that multi-view data share a uniied similarity matrix and adopt a eicient multi-graph fusion technology
[25]:

min
S,S (1)

, ...,S (V)

V
∑

v=1

( N
∑

i, j=1

(

S
(v )
i, j ∥X

(v )
i −X

(v )
j ∥

2
2 + γS

(v )
i, j

2
)

+ λ∥S (v ) − S ∥2F

)

s .t . S
(v )
i 1 = 1,

0 ≤ S
(v )
i ≤ 1,

∀v = 1, . . . ,V, ∀i = 1, . . . ,N,

(5)

where λ is the trade-of parameter. The characteristic of consensus in multi-view data indicates that normal

instances have similar neighbor structures and similarities, so a common similarity can be learned. Nevertheless,

the "inconsistent behaviors" indicates that class outliers learn diferent view-speciic similarities with respect to

diferent view data, which fail to explore the common cross-view similarity and result in large fusion error.

3.3 The Proposed Method

We argue that the fusion of the above two submodules is necessary, and also believe that detecting attribute

outliers and class outliers are interdependent. There are two reasons for this practice:

• Multi-view class outliers are somewhat similar to the single-view attribute outliers when all views of

features are concatenated together.

• Class-attribute outliers exhibit both the behaviors of attribute outliers and class outliers, so it’s not suitable

to use any single detection model above.

ACM Trans. Knowl. Discov. Data.



1:8 • Yu Wang, Chuan Chen, Jinrong Lai, Lele Fu, Yuren Zhou, and Zibin Zheng

Given this premise, we combine Equation (3) and Equation (5), and propose our objective function:

min
Z ,Z (1)

, ...,Z (V )

N
∑

i=1

( V
∑

v=1

(

∥X
(v )
i − ZiX

(v )

N (i )
∥22+

λ∥Zi − Z
(v )
i ∥

2
2 + µD

(v )
i Z

(v )
i

T
)

+ γ ∥Zi ∥
2
2

)

s .t . Z
(v )
i 1 = 1,

0 ≤ Z
(v )
i ≤ 1,

∀v = 1, . . . ,V, ∀i = 1, . . . ,N,

(6)

where N (i ) is the predeined multi-view neighbor set and

D
(v )
i, j = ∥X

(v )
i −

(

X
(v )

N (i )

)

j
∥22 , j = 1, . . . , |N (i ) |. (7)

This objective function Equation (6) consists of the following parts (as presented in Figure 2): Adaptive similarity

learning term, i.e., D
(v )
i Z

(v )
i

T
, learns the view-speciic similarity Z

(v )
i among neighbors; Graph fusion term,

i.e., ∥Zi − Z
(v )
i ∥

2
2 , learns the common cross-view similarity Z ; Self-Representation term, i.e., ∥X

(v )
i − ZiX

(v )

N (i )
∥22 ,

reconstructes the origin view data through the common cross-view similarity; Regularization term, i.e., ∥Zi ∥
2
2 , acts

as the l2-norm in self-representation method and the smoothness regularization in adaptive similarity learning

method.

3.4 Outlier Measurement Criterion

As analyzed above, the attribute outliers have large values in self-representation term, and the class outliers have
large values in the graph-fusion term, we can get the outlier scoring function as:

outlier_score(i ) =

V
∑

v=1

(

∥X
(v )
i
− ZiX

(v )

N (i )
∥22 + λ ∥Zi − Z

(v )
i
∥22

)

. (8)

Notice that the parameter λ is shared in the objective function Equation (6) and Equation (8), which is because

that the objective function serves the same aim as the outlier scoring function.

4 OPTIMIZATION

Problem (6) can be solved by the eicient alternating optimization method which updates Z and Z (v ) iteratively.

4.1 Fix Z and Update Z (v )

For the given i-th instance, keeping only the terms relevant to Z
(v )
i in problem (6), we obtain:

min
Z

(v )
i

λ∥Zi − Z
(v )
i ∥

2
2 + µD

(v )
i Z

(v )
i

T

s .t . Z
(v )
i 1 = 1,

0 ≤ Z
(v )
i ≤ 1.

(9)
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Algorithm 1 The enumeration method to solve problem (11).

Input: d and γ ;

Output: s;

1: Sort d from smallest to largest;

2: for p = 1, . . . ,D do

3: Calculate λ using (14);

4: if λ − dp > 0 and λ − dp+1 ≤ 0 then

5: Record current λ and break;

6: end if

7: end for

8: for j = 1, . . . ,D do

9: Calculate sj using Equation (13);

10: end for

Reformulating the Equation (9) and ignoring the constant, we have:

min
Z

(v )
i

(

µD
(v )
i − 2λZi

)

Z
(v )
i

T
+ λ∥Z

(v )
i ∥

2
2

s .t . Z
(v )
i 1 = 1,

0 ≤ Z
(v )
i ≤ 1.

(10)

The optimization problem (10) can be abstracted as:

min
s

d
T
s + γ ∥s ∥22

s .t . sT 1 = 1,

0 ≤ s ≤ 1,

(11)

where d, s ∈ RD. The Lagrangian function of problem (11) is

L (s, λ,ν ) = dT s + γ ∥s ∥22 − λ(s
T − 1) − νT s . (12)

According to the KKT condition [10], the optimal solution s should be

sj =
1

2γ

(

λ − dj
)

+

. (13)

Without loss of generality, assume that elements in d is sorted, i.e., d1 ≤ d2 ≤ . . .dD, the irst p elements satisfy

λ − dj > 0,∀j = 1, . . . ,p, we have:

λ =
1

p

*.
,2γ +

p
∑

j=1

dj
+/
- . (14)

We can calculate s and λ by enumerating p, which is summarized in Algorithm 1.

4.2 Fix Z (v ) and Update Z

For the given i-th instance, ignoring the irrelevant terms with respect to Zi in problem (6), we obtain:

min
Zi

V
∑

v=1

(

∥X
(v )
i − ZiX

(v )

N (i )
∥22 + λ∥Zi − Z

(v )
i ∥

2
2

)

+ γ ∥Zi ∥
2
2 . (15)
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Algorithm 2 Self-Representation with Local Similarity Preserving for fast multi-viewoutlier detection

Input: Multi-view dataset X =
{
X

(1)
, . . . ,X

V
}
; Parameters λ, µ, γ and the neighbors number k ;

Output: outlier_score;

1: Use the k-nn algorithm to abtain the neighbors set in each view, and then merge them into the uniied N (i );

Calculate D
(v )
i using Equation (7);

Z = 0;

2: repeat

3: for i = 1, . . . ,N do

4: for v = 1, . . . ,V do

5: Update Z
(v )
i by using Algorithm 1 to solve the problem (10);

6: end for

7: Update Zi using Equation (16);

8: end for

9: until converge

10: for i = 1, . . . ,N do

11: Calculate outlier_score using Equation (8);

12: end for

Taking the derivative of Equation (15) and solving it, we have:

Zi =
*
,

V
∑

v=1

(

X
(v )
i

X
(v )

N (i )

T

+λZ
(v )
i

)+
-
*
,

V
∑

v=1

X
(v )

N (i )
X

(v )

N (i )

T

+λVI +γ I +-
−1

. (16)

We summarize the algorithm to solve problem (6) in Algorithm 2.

5 THEORETICAL ANALYSIS AND EXTENSION

5.1 Time Complexity

In this subsection, we analyze the time complexity of Algorithm 2. The features dimension of v-th view is D(v ) ,

which uses D to uniformly represent all the D(v ) . The cost of constructing the initial neighbors set by using

KNN algorithm is O (V(D + k )N logN). The cost of storing X
(v )

N (i )
for all instances and all views is O (VkDN).

X
(v )

N (i )
X

(v )

N (i )

T
and X

(v )
i X

(v )

N (i )

T
can be precomputed to accelerate the update of Z , which are spent O (V2k2DN) in

total. The cost of calculate D (v ) for all views is O (VkDN). Therefore, the total time complexity of initialization is

O (V(D+k )N logN+V2k2DN). To update Z (v ) with Algorithm 1, we needO (k logk ) for sort and enumeration in

one run, and need O (Vk logkN) in total. To update Z with Equation (16), we need O (k3N) mainly used to solve

the linear function. Overall, suppose the number of iteration is t , the total time complexity of Algorithm 2 is

O (V(D + k )N logN + V2k2DN + (Vk logk + k3)Nt ).

To make the initialization more eicient, we can collect a small normal set to process the selection of neighbors

set, which means that we can use a relatively smaller time complexity than O (V(D + k )N logN) for the k-nn

algorithm. As the proposed method mainly aims at the low-dimensional data, D is considered to be small when

analyzing the time complexity. In this way, D, k and V are relatively small compared to N and thus can be ignored,

and the inal time complexity of the proposed method is near O (N logN).
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Algorithm 3 Online multi-view outlier detection

Input: Normal set A =
{
A

(1)
, . . . ,A

V
}
;

The instance that need to be detected x ;

Parameters λ, µ, γ and the neighbors number k ;

Output: outlier_score(x );

1: initial: Use the k-nn algorithm to abtain the neighbors set in each view, and then merge them into the

uniied N (x );

Calculate d (v ) using Equation (18);

z = 0;

2: repeat

3: for v = 1, . . . ,V do

4: Update z (v ) using Algorithm 1;

5: end for

6: Update z;

7: until converge

8: Calculate outlier_score(x );

5.2 Parameters

There are four parameters in the proposed method: λ, µ, γ and k . The parameter λ controls the degree of

consistency between view-speciic and cross-view similarity, which should be increased with a high class outliers

proportion. The parameter µ controls the weight of view-speciic similarity learning, which can be simply set to

1 in most cases. The parameter γ controls the weight of regularization, which should be increased with a high

attribute outliers proportion. The parameter k is related to the given dataset and usually needs to be adjusted

separately irst.

5.3 Extension: Online Outlier Detection Algorithm

Suppose there are a given normal instances set A, and review the part of objective function (6) with respect to a

speciic instance x , we can simply get the objective function of the online algorithm:

min
z,z (1)

, ...,z (V )

V
∑

v=1

(

∥x (v ) − zA
(v )

N (x )
∥22 + λ∥z − z

(v ) ∥22

+ µd (v )
z
(v )T

)

+ γ ∥z∥22

s .t . z (v )1 = 1,

0 ≤ z
(v ) ≤ 1,

∀v = 1, . . . ,V,

(17)

where

d
(v )
j = ∥x (v ) −

(

A
(v )

N (x )

)

j
∥22 , j = 1, . . . , |N (x ) |. (18)

The objective function (17) shares the same form with the origin problem (6), so we can simply summarize the

algorithm to solve problem (17) in Algorithm 3. In the practical scenario, if we can not obtain the normal set, we

can run Algorithm 3 and select the normal instances according to their outlier scores to build the initial normal

set.
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Table 2. Datasets and related description: the table data is the feature dimension of each view (with feature name in

parenthesis)

View Synthetic dataset
UCI datasets Real multi-view datasets

iris pima zoo ionosphere letter leaf MSRC-v1 AWA-10 Caltech-7

1 2 2 4 8 17 8 7 24 (CM) 2688 (CQ) 48 (Gabor)

2 2 2 4 8 17 8 7 576 (HOG) 2000 (LSS) 40 (WM)

3 - - - - - - - 512 (GIST) 252 (PHOG) 254 (CENTRIST)

4 - - - - - - - 256 (LBP) 2000 (SIFT) 1984 (HOG)

5 - - - - - - - 254 (CENT) 2000 (RGSIFT) 512 (GIST)

6 - - - - - - - - 2000 (SURF) 928 (LBP)

Number of instances 400 150 768 101 351 1300 340 210 800 1474

Number of categories 1 3 2 7 2 26 30 7 10 7

5.4 Compared to Autoencoder

Noting that the proposed method learns the similarity features from the original data and tries to restore the data,

this model can be considered as a special autoencoder framework. In this model, the adaptive similarity learning

term with regularization constitutes a nonlinear encoder, and the self-expressive learning term is a linear decoder.

By introducing additional similarity information, the proposed model can efectively solve the problem that the

feature learning is too free so that the model has better performance. However, while simple linear decoders bring

simplicity, they also bring the problem of limited representation ability for high-dimensional data, compared

with some deep architecture. We take this challenge as a direction for further research in the future.

6 EXPERIMENTS

In this part, we evaluate the proposed method on both synthetic and real datasets. For simplicity, we denote the

proposed method as SRLSP in the following context. Speciically, our core code is released at Github1.

6.1 Experiment Seting

6.1.1 Datasets and Preprocessing. One synthetic dataset is generated without clustering structure, which is used

to evaluate the performance on issue I2. Six UCI datasets are selected with diferent outliers proportion settings,

which are used to evaluate the performance on issue I3. Three real multi-view datasets with more than two

views are selected, which are used to evaluate the performance on issue I1. Table 2 summarizes the detailed

information of the experiments datasets.

The real datasets are all multi-category datasets without outliers, and the UCI datasets are all single-view

datasets. For UCI datasets, we split the single-view features evenly into two subsets, generating the two-view

datasets. To save the veriication time, the original datasets are reduced to a certain extent, and a small of data

instances are randomly and uniformly selected from each category for the experiment. We follow the outliers

generation method in [28] to pre-process the data with three types of multi-view outliers. To avoid randomness,

we repeat this generation method 20 times for the same dataset and calculate the mean values and standard

deviations of the running results.

6.1.2 ComparisonMethods and Related Seting. We compare SRLSPwith seven state-of-the-artmethods: OneClassSVM

[42], HOAD [20], AP [34], MLRA [29], LDSR [28] , MODDIS [24] and NCMOD [16]. OneClassSVM is the rep-

resentative method for single-view outlier detection, which is included to verify the detection performance of

the single-view method on multi-view outliers setting. Also, the multi-view features are concatenated into one

group to ensure that OneClassSVM does work. AP, HOAD, and MLRA are the pair-wise constraint methods,

1https://github.com/wy54224/SRLSP
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Table 3. The comparison result on the synthetic dataset. AUC values (mean ± standard deviation) are reported, and the best

and the second-best results are in bold and underline, respectively.

AUC (mean ± std) ↑

OneClassSVM 0.842±0.018

HOAD 0.468±0.161

AP 0.660±0.042

MLRA 0.790±0.119

LDSR 0.825±0.043

MODDIS 0.975±0.011

NCMOD 0.874±0.033

SRLSP 0.996±0.005

which are included to expose the laws of pair-wise constraint on multi-view data. MLRA and LDSR are also

self-representation methods, which are included to show the superiority in combination with local similarity

information. MODDIS is the neural network method and shows excellent performance on diferent multi-view

outliers settings. NCMOD is the latest neural network-based method and achieves state-of-the-art performance.

Both MODDIS and NCMOD are included as the representative method of state-of-the-art multi-view outlier

detection methods.

For graph-based methods, the RBF kernel is used to construct the similarity matrix. When the number of

views is greater than 2, we enumerate all pairs of views and then sum up the outlier scores for those pair-wise

constraint methods. For all methods, we carefully tune the parameters according to the suggestions in the paper.

For SRLSP, parameter µ is simply set to 1. Only when the class outliers proportion is relatively large can we

appropriately increase µ. Parameter k is searched in {2, 4, 7, 10, 20}. After setting parameters µ and k , λ and γ

are combinatorial searched in {10−4, 10−3, 10−2, 10−1, 1, 10}. We adopt AUC, the area under the ROC curve, to

evaluate the performance of multi-view outlier detection.

6.2 Experiments on Synthetic Dataset

The synthetic dataset is generated by the python module scikit-learn, which contains 400 instances, 1 clusters

and 2 features, as shown in Figure 3(a).

Another view of features is generated by a linear transformation of the original data plus a random perturbation,

as shown in Figure 3(b). We process the data according to the outlier generation method in [28] to obtain our

synthetic dataset containing outliers, as shown in Figure 3(c) and Figure 3(d). The proportions of attribute outliers,

class outliers, and class-attribute outliers are set as NA : NC : NCA = 5% : 5% : 5%. The comparison result is shown

in Table 3.

Among these above methods, OncClassSVM, MODDIS, NCMOD, and the proposed SRLSP are not based

on the clustering hypothesis, so these four methods show the best performances on the synthetic dataset. In

these four methods, the worst-performing OneClassSVM is the single-view method, which does not fully utilize

the characteristics of multi-view data. The proposed SRLSP substantially outperforms other methods, which

numerically indicates that the combination of self-representation and similarity method can markedly reduce

restrictive conditions on the given dataset.
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(a) View 1 (without outliers) (b) View 2 (without outliers)

(c) View 1 (with outliers) (d) View 2 (with outliers)

Fig. 3. Two views of the synthetic dataset: To facilitate the generation of outliers, we divide the dataset evenly

into two, assuming that each side belongs to one category. View 2 is generated by a linear transformation of the

data in View 1 plus a random perturbation. We process the data according to the outlier generation method

in [28], and finally obtain a synthetic dataset containing outliers, as shown in subfigures (c), (d) (For clarity of

visualization, we randomly sample half of the outliers for visualization). The proportions of atribute outliers

(the black star), class outliers (the red diamond), and class-atribute outliers (the orange square) are set as

NA : NC : NCA = 5% : 5% : 5%.

6.3 Experiments on Real Datasets

6.3.1 Comparison Results on UCI Datasets. The two-views UCI datasets are applied on diferent outliers propor-

tions settings, which contain only 10% of one type of outliers. The comparison results are shown in Table 4, Table

5, and Table 6. Because UCI datasets are single-view, OneCloseSVM also has good performance on some datasets.

As a neural network method, if the network capacity is high, MODDIS will be over-itting and can not distinguish

attribute outliers from normal instances, so it performs very poorly on some attribute outliers datasets. AP has

ACM Trans. Knowl. Discov. Data.
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Table 4. The comparison result on the UCI datasets. AUC values (mean ± standard deviation) are reported, and the best and

the second-best results are in bold and underline, respectively.

NA : NC : NCA = 10% : 0% : 0%

iris pima zoo ionosphere letter leaf

OneClassSVM 0.995±0.002 0.028±0.015 0.002±0.005 0.454±0.023 0.364±0.005 0.881±0.006

HOAD 0.122±0.236 0.955±0.171 0.723±0.244 0.562±0.126 0.430±0.094 0.715±0.145

AP 0.037±0.036 0.001±0.002 0.396±0.101 0.483±0.037 0.487±0.012 0.171±0.032

MLRA 0.976±0.027 0.934±0.013 0.846±0.066 0.637±0.152 0.758±0.029 0.990±0.010

LDSR 0.979±0.029 0.994±0.004 0.928±0.018 0.727±0.016 0.996±0.001 1.000±0.000

MODDIS 0.758±0.121 0.002±0.003 0.894±0.040 0.710±0.022 0.051±0.028 1.000±0.000

NCMOD 0.987±0.014 0.999±0.001 0.859±0.045 0.637±0.023 0.999±0.001 0.984±0.006

SRLSP 1.000±0.000 0.990±0.002 0.979±0.008 0.732±0.007 0.738±0.007 0.999±0.001

Table 5. The comparison result on the UCI datasets. AUC values (mean ± standard deviation) are reported, and the best and

the second-best results are in bold and underline, respectively.

NA : NC : NCA = 0% : 10% : 0%

iris pima zoo ionosphere letter leaf

OneClassSVM 0.500±0.080 0.505±0.035 0.479±0.093 0.533±0.047 0.496±0.025 0.497±0.043

HOAD 0.633±0.100 0.514±0.040 0.574±0.073 0.449±0.054 0.576±0.022 0.510±0.041

AP 0.966±0.030 0.492±0.037 0.933±0.045 0.943±0.024 0.831±0.014 0.738±0.058

MLRA 0.849±0.061 0.664±0.029 0.642±0.097 0.801±0.045 0.653±0.021 0.821±0.045

LDSR 0.756±0.121 0.627±0.031 0.829±0.064 0.834±0.025 0.758±0.024 0.705±0.058

MODDIS 0.819±0.104 0.694±0.030 0.782±0.096 0.784±0.034 0.852±0.028 0.711±0.048

NCMOD 0.595±0.115 0.509±0.030 0.849±0.057 0.836±0.034 0.524±0.028 0.695±0.077

SRLSP 0.946±0.043 0.748±0.030 0.887±0.054 0.922±0.020 0.925±0.014 0.810±0.022

Table 6. The comparison result on the UCI datasets. AUC values (mean ± standard deviation) are reported, and the best and

the second-best results are in bold and underline, respectively.

NA : NC : NCA = 0% : 0% : 10%

iris pima zoo ionosphere letter leaf

OneClassSVM 0.503±0.064 0.508±0.031 0.514±0.093 0.555±0.045 0.506±0.021 0.510±0.047

HOAD 0.446±0.150 0.357±0.081 0.746±0.021 0.429±0.065 0.242±0.117 0.717±0.141

AP 0.952±0.022 0.436±0.243 0.851±0.067 0.905±0.018 0.785±0.021 0.828±0.043

MLRA 0.878±0.039 0.744±0.023 0.814±0.054 0.725±0.037 0.651±0.032 0.989±0.013

LDSR 0.926±0.038 0.947±0.015 0.879±0.044 0.785±0.022 0.957±0.007 1.000±0.000

MODDIS 0.866±0.076 0.711±0.085 0.856±0.054 0.737±0.016 0.821±0.044 0.999±0.002

NCMOD 0.958±0.034 0.982±0.011 0.908±0.047 0.770±0.025 0.999±0.001 0.976±0.012

SRLSP 0.981±0.013 0.809±0.038 0.930±0.026 0.795±0.015 0.906±0.015 0.990±0.004
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Table 7. The comparison result on the real multi-view datasets. AUC values (mean ± standard deviation) are reported, and

the best and the second-best results are in bold and underline, respectively.

MSRC-v1 AWA-10 Caltech-7

OneClassSVM 0.680±0.042 0.800±0.024 0.789±0.016

HOAD 0.374±0.158 0.351±0.119 0.356±0.132

AP 0.508±0.030 0.455±0.024 0.454±0.020

MLRA1 - - -

LDSR 0.973±0.013 0.733±0.060 0.943±0.032

MODDIS 0.957±0.013 0.813±0.029 0.946±0.008

NCMOD 0.935±0.019 0.901±0.023 0.933±0.011

SRLSP 0.985±0.006 0.938±0.010 0.976±0.004

1 MLRA can only run on the dataset with equal features dimension on each

view.

high-quality performance in the class-outliers-only setting, but it fails to detect attribute outliers. Compared with

the state-of-the-art neural network-based multi-view outlier detection method NCMOD, the proposed SRLSP

has better performance. It must be emphasized that the SRLSP is not a neural network-based method, but it can

achieve the same level as the most advanced neural network-based method. MLRA and LDSR are the competitive

methods with SRLSP, which are all self-representation methods, and the comprehensive performance of the

proposed SRLSP is signiicantly better than MLRA, as well as is close to or even better than LDSR in most cases.

However, the proposed SRLSP has a very small time overhead, which is more competitive in real-life scenarios.

6.3.2 Comparison Results on Real Multi-View Datasets. Table 7 shows the comparison result on three real multi-

view datasets. AP and HOAD have the worst performance, which further illustrates the limitation of pair-wise

constraint. OneClassSVM is a single-view method, so its performance is worse than the regular multi-view

methods, i.e., LDSR, MODDIS, NCMOD, and the proposed SRLSP, which shows the necessity of designing the

specialized multi-view method. Therefore, the proposed SRLSP is more suitable for multi-view outlier detection

in practical scenarios regardless of the views number and features dimensions.

The convergence curves of the proposed SRLSP on these three datasets are shown in Figure 4. The optimization

algorithm can converge within one hundred iterations in most cases, but in some complex datasets, it needs

hundreds of iterations.

6.4 Ablation Experiment

In this subsection, we discuss the two submodels in Subsection 3.1 and 3.2, which are denoted as SR (The

Neighbor-based Self-Representation Submodule) and ASL (Adaptive Similarity Learning Submodule with Graph

Fusion) for short. As presented in Table 8, compared with the ASL submodule, the SR submodule can detect

attribute outliers more efectively, while the ASL submodule is better at detecting category outliers that exhibit

inconsistent behaviors from views. And the proposed SRLSP efectively fuses these two sub-modules, achieving

signiicant performance improvements on all types of multi-view outlier detection.

6.5 Parameter Analysis

There are four parameters in the proposed SRLSP, i.e., µ, k , λ and γ . The parameter µ is not adjusted in most

cases, so we mainly discuss parameters k , λ and γ . Figure 5(a) shows the evaluation result on adjusting k and

Figure 5(b) shows the evaluation result on adjusting λ and γ . Fortunately, these parameters can be easily adjusted
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Fig. 4. The convergence curve on real multi-view datasets.

Table 8. The comparison result on the pima dataset. "A", "C" and "CA" denoted the dataset contains only 10% atribute

outliers, 10% class outliers, and 10% class-atribute outliers respectively. The best results are in bold

pima (A) pima (C) pima (CA)

SR 0.973 ± 0.004 0.715 ± 0.030 0.598 ± 0.036

ASL 0.777 ± 0.018 0.729 ± 0.029 0.738 ± 0.033

SRLSP (SR + ASL) 0.990 ± 0.002 0.748 ± 0.030 0.809 ± 0.038

to the suitable range. The main reason for the poor performance is that most of the outlier_scores are close to 0

because of the over-strong capacity of the proposed model, or most of the outlier_scores are far above 0 because

of the over-weak capacity of the proposed model. Therefore, all parameters can be easily adjusted by analyzing

the distribution of outlier_scores.

6.6 Runtime Analysis

In this subsection, we discuss the relationship between the dataset sizes and algorithm runtimes. The stop criterion

is deined as follows:
|objt+1 − objt |

|objt |
< 10−2, (19)

where objt is the objective value in the t-th iteration. Figure 6 shows the comparison result, it can be seen that

the proposed SRLSP has nearly linear time complexity and is more suitable to be applied to large-scale datasets.

7 CONCLUSION

In this paper, we propose a novel self-representation method with local similarity preserving, which uses the

local similarity information to improve the learned common cross-view similarity consensus. The well-designed

objective function and outlier measurement criterion ensure the proposed method can calculate each instance

with O (NloдN ) time complexity parallelly. Extensive experimental results verify the superiority of the proposed

method on both performance and time complexity.

The method proposed in this paper efectively solves the problem of online detection of multi-view outliers and

inspires future research to focus on the online detection problem of outlier detection. There are many possible

directions for future work, including improving the proposed method with fewer parameters, associating the
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(a) (b)

Fig. 5. Analytical experiments on the MSRC-v1 dataset. (a) The AUC values with diferent values of k . (b) The

AUC values with diferent values of λ and γ .
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Fig. 6. The runtimes of diferent multi-view algorithms on the AWA dataset. MLRA can not run on this dataset as

well as its runtime performance is similar to LDSR.

proposed method with an autoencoder to handle high dimensional datasets, etc. Some other applications of

single-view outlier detection in neural networks will also be considered.
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